DISTHIBUTION STEYEWENT B §
lxszoved for pusbe reisascy !
Damibuses Unlimited %

Modeling and Interpreting Multimodal
Inputs: A Semantic Integration Approach

Minh Tue Vo and Alex Waibel

December 1997
CMU-CS-97-192 .

d St et ol .
)7 CSTOTED B

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

19980130 080

Modern user interfaces can take advantage of multiple input modalities such as
speech, gestures, handwriting... to increase robustness and flexibility. The con-
struction of such multimodal interfaces would be greatly facilitated by a unified
framework that provides methods to characterize and interpret multimodal inputs.
In this paper we describe a semantic model and a multimodal grammar structure
for a broad class of multimodal applications. We also present a set of grammar-
based Java tools that facilitate the construction of multimodal input processing
modules, including a connectionist network for multimodal semantic integration.

Abstract

This research was sponsored by the DARPA under Department of the Navy, Naval Research Office
under grant number N00014-93-1-0806, and Project GENOA under grant number 97047-1SX/
SOW-600066. Views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the DARPA or the U.S. Government.

1. INTRODUCTION

Recent advances in speech recognition technology have created a great deal of renewed inter-
est in alternative input modalities to replace or supplement the keyboard and mouse of tradi-
tional user interfaces. However, human communication does not consist solely of speech; we
convey a wealth of information through other modalities such as gesturing, writing, drawing,
facial expressions, gaze... We believe that the joint processing of such multimodal input
sources can take advantage of the redundancy and complementary information across modali-
ties to increase flexibility and robustness [1][7][8][12].

Our multimodal research has focused on building practical applications which support multi-
ple input modalities [15][16][17][18]. In the course of implementing these applications, we
have concluded that there is a need for methods to characterize multimodal user inputs, both
syntactically and semantically. In the absence of extensive input data collected for a given task
domain, an application developer may have to construct a model of what the user might say,
write, draw... in order to implement a prototype of the application. Even if data is available to
train speech recognizers for instance, the application developer may want to create a semantic
model that describes how the application would respond to each set of multimodal stimuli
drawn from the collected data. The usual approach for speech-enabled applications is to
develop a grammar that characterize spoken inputs [19]. We need to generalize this notion to
encompass more than just the speech modality.

Given a semantic model, the task of interpreting a multimodal input event consists of mapping
the event to its corresponding semantic characterization in the model. One way to interpret a
spoken utterance is to use a parser driven by a grammar to break the input utterance into
semantically significant parts, each contributing to the overall interpretation. When this notion
is generalized to multiple input modalities, we must also deal with the problem of aligning
parts from different modalities if those parts need to be combined to make sense. Temporal
alignment is an obvious approach that does not work in practice because it is difficult to con-
strain user input such that input segments that go together semantically always occur close to
one another in time. We believe that semantic alignment is a more promising approach.

In this paper we describe a semantic model for a broad class of multimodal applications, as
well as a multimodal grammar structure that embeds this semantic model in a context-free
modeling language. We also present a set of grammar-based Java tools that facilitate the con-
struction of input processing modules in multimodal applications. In addition to input model-
ing facilities, the tool set includes a connectionist-network-based parsing engine capable of
segmenting and labeling multimodal input streams to ease the multimodal interpretation task.
This flexible, trainable parsing network represents a multimodal interpretation approach based
on the semantic alignment and integration of multiple input streams.

2. AMULTIMODAL SEMANTIC MODEL

One popular approach to speech understanding is to write a grammar that covers as many
utterances as possible in the designated task domain. Given an input utterance to be inter-
preted, a parser attempts to match the utterance against grammar rules to break it down into

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 2

components that carry semantic tags, which are assembled to form the interpretation of the
input utterance. This approach is exemplified by the Air Travel Information Service (ATIS)
system described in [19].

It is possible to employ the grammar used for interpretation as a user input model, i.e., a
model that characterizes the kind of sentences we can expect from the users. However, we
believe it is advantageous to put some separation between the notions of modeling and inter-
preting user input. An input model should characterize the most likely input combinations we
may encounter, whereas an interpretation engine should maximize coverage and be flexible
enough to handle even input combinations that may not be anticipated by the input model. The
development of our multimodal semantic model was driven by the necessity of handling mul-
tiple input modalities and the parallel need for distinguishing the processes of modeling and
interpreting multimodal inputs. This section describes the input modeling process; the inter-
pretation process will be explored in Section 3.

A multimodal semantic model must answer two questions:
¢ What is the meaning assigned to a multimodal input event?

¢ How is this meaning derived by combining inputs from different modalities?

2.1. Meaning of Multimodal Input Events

In multimodal applications, the emphasis is on the way the system responds to user input. The
user is trying to accomplish a task, and if the application carries out the right action then we
are justified in saying that it has successfully interpreted whatever the user said, wrote, drew...
In practical applications the available actions may also be characterized by parameters that
could cause actions with the same name to have different effects. For instance, a delete action
in a word processor would not be meaningful unless we specify what is to be deleted by sup-
plying some kind of parameters. Thus we define the meaning of a multimodal input event as
the parameterized action that the application should perform in response to the input event.

2.2. Combination of Multimodal Input Signals

A multimodal input event may be composed of input signals from one or more sources, such
as digitized speech data and point coordinates from handwritten strokes. For each input
modality we must decide when to start and stop recording a single input event. We also have
to select a policy that determines when to group input events from different modalities into a
combined multimodal input event. These design decisions may depend on the target multimo-
dal application. In the applications we developed [15][16][17], we usually start recording
input when the user starts speaking or drawing, and stop when no further input has been
received within a predefined time-out interval. Input events from different modalities are
grouped if they occurred close together in time, i.e., if their durations overlap or if one event
starts within a time-out interval after another event ends. In the remainder of this discussion
we will assume multimodal input events are collected and grouped according to some criteria
similar to the above.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 3

In deciding how to assign meaning to multimodal input events, inputs from different modali-
ties may be associated with one another at many levels. At the lowest level the raw signals
might be combined somehow before a meaning is derived from the aggregate signal. At an
intermediate level the raw signals might be converted to a more convenient representation
(such as a text string for speech input or a sequence of gesture shapes for pen input) before
being combined and interpreted together. At a higher level the input from each modality might
be assigned a partial interpretation, and these partial results could be merged in some way to
form a joint interpretation. Combining inputs at the signal level is difficult at best and does not
present any obvious way of characterizing semantics in a general, domain-independent man-
ner. Combining partial interpretations is possible and practical [17]; in fact, the semantic rep-
resentation employed in this process (as described in [17]) was the inspiration for the semantic
model described here. We will show that it is possible to derive a semantic interpretation from
the combination of intermediate symbolic input representations.

2.3. Action Frames and Parameter Slots

Our proposed model is applicable if the input from each modality can be represented as an
information stream, i.e., the input consists of a sequence of tokens which may contribute
information towards determining the output action and its parameters. We look at a multimo-
dal input event as a set of parallel streams that can be aligned and jointly segmented such that
each part of the segmented input influences part of the interpretation (see Figure 1). We call

Modality 1 /I I
Modality 2 | /I
Modality 3 [|

' PSlot 1 " PSlot2 = PSlot3
FIGURE 1. Alignment and Joint Segmentation of Multimodal Inputs

the overall interpretation an action frame since it specifies the action to be carried out in
response to the input. Each part of the segmented input is a parameter slot that specifies one
action parameter. The input segments in each parameter slot should contain enough informa-
tion to determine the value of the corresponding parameter.

Consider the following illustrative example. Suppose we have a map navigation system that
allows the user to ask for information by speaking and drawing on the screen. The user might
say “How far is it from here to there?” while drawing an arrow between two points on the dis-
played map. The speech input stream consists of the words in the utterance whereas the pen
input stream contains a pair of arrow_start and arrow_end tokens. The interpretation of this
input combination is a QueryDistance action frame containing a QueryDistanceSource
parameter slot followed by a QueryDistanceDestination parameter slot. The input streams are
segmented and aligned as follows:

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 4

Speech: how far is it from here to there
Pen: arrow_start arrow_end

QueryDistanceSource QueryDistanceDestination

If the destination point is somewhere outside the displayed area, the user might say “How far
is it from here to Philadelphia?” and circle the starting point instead. In this case the input seg-
mentation becomes

Speech: how far is it from here to philadelphia
Pen: circle
QueryDistanceSource QueryDistanceDestination

For the utterance “How far is it from Pittsburgh to Philadelphia?” the parameter slots would
consist of speech segments only.

Note that it is not necessary to have a segmentation of the form

QueryDistanceAction: how far is it

QueryDistanceSource: from <somewhere>

QueryDistanceDestination: to <somewhere>
since the action is implicitly specified by the sequence of parameter slots. The QueryDis-
tanceAction segment does not specify any action parameter and thus does not qualify as a
parameter slot. It is possible to redefine our semantic model to include such segments but we
have not found this to be advantageous in practice. In general it is only necessary to break the
input into segments that actually contain information needed to extract action parameters.

2.4. Semantic vs. Temporal Alignment

Note that the alignment and segmentation process described above makes no mention of any
temporal constraints. The various parts of the input streams are aligned purely based on their
semantic contents. This way there is no time-alignment constraints on the way the user inter-
acts with the system. It is also possible to force some kind of temporal alignment based on
time-stamps assigned to input tokens. However, if this is done without regards to semantics,
we may end up with cross-modal combinations that do not make sense, or we may have to
impose constraints on the way the user interacts with the system (e.g., a gesture must be drawn
right at the time certain words are spoken). This would severely compromise the flexibility of
the user interface, which goes against the reason we wanted multimodal support in the first
place. If temporal alignment is used at all, it should be used only to constrain the-semantic
alignment by restricting the alignment boundaries according to time-stamps. This would be
properly part of the interpretation process and thus irrelevant in the semantic modeling stage.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 5

3. MULTIMODAL INPUT INTEGRATION

Given the semantic model described above, the first step in interpreting a multimodal input
event is to find an alignment and joint segmentation of the input streams. This input integra-
tion process produces input segments labeled as parameter slots, which can be postprocessed
to extract the actual action parameters. The parameter-extraction postprocessing is necessarily
domain-dependent, but it is possible to devise domain-independent algorithms to integrate
multimodal input streams. We have implemented such an algorithm based on a connectionist
network.

3.1. Basic Mutual Information Network

Suppose we have a sequence of input tokens t,,, m=1...M, that is to be associated with one of
several output classes c,, n=1...N. It is reasonable to select the maximum a posteriori (MAP)
hypothesis, or the output class having the greatest a posteriori probability given the input:

Cpap = ATgMaX P(cp|tity- - 1hy)
n

If we make the simplifying assumption that the input tokens are independent as well as condi-
tionally independent given the target output, the above equation can be rewritten as

Cpap = arggnax P(c,|tity-- 1y)
n

P(1t,... tMlcn)P(cn)
P(t,t,...1)

P(tmICn)
L P(t,)

argmax
cn

argmax P(c,)
Cn

This is essentially a naive Bayes classifier [10]. Since the logarithm function is monotonically
increasing, we have

P(t,,|c,)
Cyap = argmax |logP(c,) +Zlogw
m m

argmax | logP(c,) + ZI(tm, c,)
c, -

where I(t,, c,) = log [P(tmlcn)/ P(t,)] is the mutual information of input ¢,, and output c,,.

The right hand side of the above equation can be realized by a connectionist network. The
activation of output unit c,, is a weighted sum of input unit activations, where an input unit ¢,,

has activation 1 if the token ¢,, is present in the input sequence, and O otherwise. The connec-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 6

tion weight from input ¢,, to output ¢, is w,,, = I(t,, c,). There is also a bias connection

with weight w_ = logP(c,). The output with the highest activation is selected as the most
& n grLc, g

probable hypothesis given the input sequence. This network architecture was first proposed by
Gorin et al. [3].

Although the simplifying independence assumption does not usually hold in practice, this
mutual information network has been shown to learn input-output associations quite success-
fully [3][9][14]. The input independence assumption implies that classification does not
depend on the order of the input tokens. To take into account the fact that adjacent input
tokens sometimes form phrases or sentence fragments having significant information con-
tents, we can introduce higher-order input units which are activated when particular token
sequences occur [4]. Since the number of high-order input units can explode quite rapidly, we
prune away units that are not useful for classification. This can be done using a measure called
salience which is indicative of input relevancy with respect to classification [4].

The mutual information network architecture is depicted in Figure 2.

C1 Cy C3

Output Layer
Input Layer 3 w3 = I(t4,c3)
t234
Input Layer 2
LX)
Input Layer 1
t t t3 ts

FIGURE 2. Mutual Information Network Architecture

3.2. The Multi-State Mutual Information Network

The basic mutual information network described above assigns a single label to each input
sequence. Since our goal is to produce a sequence of labels (i.e., parameter slots) by segment-
ing the input, we need to extend the network to handle this case.

The output activations in the basic mutual information network can be regarded as estimates
of the a posteriori probabilities P(cnltltz...tm) . We want to develop a similar score for input
segmentations and label assignments. Assume we have an input segmentation s;s,...s; Where
each s; is a group of adjacent input tokens (in the general case the group may consist of sub-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 7

groups from different modalities). To evaluate a possible label assignment c;c,...c;, we want
to estimate

P(c1c2...ck|slsz...sk) = P(cklslsz...sk ACiCy...Cp_1)P(ciCy..ccp |s1s2...sk)

We can estimate P(ck|s1s2...sk A C1Cy...C,_1) as follows. Assuming that the first k-1 input

segments have been correctly labeled as cqc,...c;_1, we replace them by their respective labels
to get the equivalent input sequence cjcy...c;.15. The a posteriori probability

P(cklclcz...ck_lsk) with respect to this new input sequence is an estimate of
P(cklslsz...sk/\ €1€y...Cx_1). The advantage of this transformation is that
P(ckl €1C5...Cy_15;) can be estimated by feeding the transformed input sequence c;cy...cy. 15

to a mutual information network.

We also make the simplifying assumption that the partial sequence c;c,...c;.; only depends on
the input tokens in the first k-1 segments; thus

P(clcz...ck_1|s1s2...sk) = P(clcz...ck_1|s1s2...sk_1)
Combining the above transformations yields
P(clcz...cklslsz...sk) = P(ck|c1c2...ck_lsk)P(clcz...ck_1|s1s2...sk_1)
Let P(clcz...ck|s1s2...sk) denote an estimate of P(c1c2...ck|s1s2...sk) that satisfies the
above recurrence relation exactly. We can use recursive decomposition to obtain
P(cl...ck|s1...sk) = P(cklcl...ck_lsk)ﬁ(cl...ck_llsl...sk_1)

P(cklcl...ck_lsk)P(ck_1|c1...ck_2sk_ 1)P(cl...ck_2|s1...sk_2)

P(cklcl...ck_lsk)P(ck_1|c1...ck_2sk_1)...P(c1|s1)
Taking the logarithm of both sides yields
logf’(cl...cklsl...sk) = logP(cllsl) + 10gP(c2|c1s2) +...+ logP(ck|c1...ck_1sk)

Each term in the above sum is estimated by an output activation in the mutual information net-
work, hence the sum can be interpreted as the score of a path that goes through the segment
labels cic)...c; in order, as illustrated in Figure 3. Using a dynamic programming algorithm
similar to the Viterbi search or Dynamic Time Warping in speech recognizers [11], we can
find an input segmentation and a corresponding label assignment that maximize the path
score. Multiple input modalities are accommodated by implementing the path score maximi-
zation algorithm over more than one input dimension, where each dimension extends along
one input stream. Figure 4 shows a path over two input dimensions.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 8

. logP(cslcqicys3) .

€3
E IOgP(C21C1S2)
€ .
IOgP(Cl lsl) : :
€1 : !
f S1 :) f S3 f

FIGURE 3. Path Score of Input Segmentation and Labeling

. Query
DL St AN
Dst :
. Query . 2 RS
Distance_ X R AP S A S S N
Src . . o . X .
] \~ [. 1 +]
arrow_end :) ,’ ® ® ® x
[* 1 [1] [[[
arrow_start ’." X : X : : .
’ 1
& [|
GA’ how far is it from here to there
SPEECH

FIGURE 4. Output Path Over Multidimensional Inputs

The above path score maximization procedure effectively adds an extra layer on top of the
basic mutual information network (see Figure 5). Each output unit of the mutual information
network constitutes an output state, and the top layer produces the best sequence of states that
fits the input, in a manner reminiscent of the Multi-State Time Delay Neural Network [5][6].
We call this architecture the multi-state mutual information network, or MS-MIN.

The current implementation of the MS-MIN produces a parameter slot sequence in only one
action frame for each multimodal input event. However, it would be straightforward to modify
the dynamic programming algorithm in the state layer to produce a path through more than
one action frame. Such an enhanced network would be able to parse a multimodal input event
that maps to a sequence of two or more actions. This could accommodate input sentences such
as “Cancel the meeting with Fred and schedule a meeting with John” in a multimodal appoint-
ment scheduler that supports CancelMeeting and ScheduleMeeting actions.

3.3. Training the MS-MIN

In backpropagation neural networks, the connection weights are incrementally adjusted dur-
ing training by a gradient descent algorithm to minimize a classification error function [13]. In
contrast, the weights in a mutual information network can be computed directly from occur-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 9

C3 p—————

State Layer c

o |
¢ Cy C3
Output Layer
Input Layer 3 wy3 = I(t4,c3)
t234
Input Layer 2
th3
Input Layer 1
t; 1) t3 t4

FIGURE 5. Multi-State Mutual Information Network Architecture

rence probabilities observed in the training data. These probabilities can be estimated by a
simple counting procedure [3]. In Section 5.5 we will describe how the weights can be auto-
matically generated from a grammar-based input model. Thus our network architecture enjoys
a definite advantage over backpropagation networks since the training time is drastically
reduced or eliminated altogether.

In principle the mutual information network is capable of learning incrementally during actual
use, as demonstrated by Gorin et al. [3]. The MS-MIN inherits this capability; however, we
need to conduct more experiments to determine to what degree this is true in practice, when
the task domains are complex and a lot of training data must be used to achieve adequate cov-
erage.

4. GRAMMAR-BASED MULTIMODAL INPUT MODELING

The semantic model described in Section 2 can serve as a basis for a more comprehensive
multimodal input modeling language. After deciding what action frames to include and what
parameter slots to put in each action frame, we can use a context-free grammar to specify the
various possible things the user might say, write, draw... and their corresponding segmentation
into parameter slots. The intent of this grammar structure is to capture syntactic elements in
relation to their semantics. Our parameter slot segmentation model allows us to do this across
modalities. In addition, we can incorporate a probabilistic model that specifies the likelihood
of each input combination modeled by the grammar.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 10

4.1. Grammar Components

Our form of multimodal grammars consists of two basic entities: nodes and sequences. A
node may be a literal or a group of related constructs forming a single entity. A sequence con-
sists of a series of nodes and represents one of possibly many alternatives within a complex
node. Each sequence has a weight specifying the relative likelihood that the sequence will be
chosen within the parent node.

There are six types of nodes:

» a Toplevel represents the entire grammar and contains one or more sequences, each of
which contains exactly one AFrame;

o an AFrame represents an action frame and contains one or more sequences, each of which
consists of one or more PSlot;

» a PSlot represents a parameter slot and contains one or more UnimodalNodes (at most one
for each modality);

e a UnimodalNode specifies a sub-grammar for one single modality and has the same struc-
ture as a NonTerm, with the addition of a label specifying the modality;

e a NonTerm is a non-terminal node consisting of one or more sequences, each of which con-
tains one or more NonTerm or Literal;

¢ a Literal is a terminal node containing a text string.

Figure 6 shows a simple grammar that illustrates all the basic building blocks. The grammar
structure described here is equivalent to a recursive transition network formulation [19] which
can represent any context-free grammar.

There exist syntactic descriptions of context-free grammars that include notations for optional
or repeating elements. These are only “syntactic sugar” notations that are convenient but not
necessary, since they can be expressed using only the basic notations. For example, a node in
our multimodal grammar formulation can be made optional by replacing it with a NonTerm
containing an empty sequence and a second sequence that includes the original node. Simi-
larly, a repeating node is equivalent to a NonTerm that recursively references itself; for
instance,
N ::= a | aN

represents any number of repetitions of the letter a. The current implementation of our multi-
modal grammar structure does not include shortcut notations.

4.2. Grammar Implementation

The grammar structure described above can be easily implemented using the object-oriented
formalism in Java. Figure 7 shows the resulting class hierarchy. This design permits a great
deal of code reuse; for instance, the code for manipulating sequences is shared among
Toplevel, AFrame, UnimodalNode, and NonTerm. Polymorphism greatly simplifies the code;
thus Sequence only has to deal with Node instead of all its different subclasses. All the com-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 11

d) UnimodalNodes in “Zoom” PSlots

b) AFrame “AdjustView”

ZaomCantei_0[P EM)

ZoomAmount 0(SPEECH
ZoomCante_O0{SPEECH)

ZaomAmount_0[SPEECH

c) PSlots in AFrame “AdjustView” e) NonTerms and Literals

FIGURE 6. Multimodal Grammar Structure

mon functionality is factored out and put into a common root class, GObject, which presents a
uniform interface to all external entities that have to manipulate grammar objects.

4.3. Grammar Traversal

Most of the grammar-based tools described in later sections do their work by traversing the
grammar graph structure and performing some operation on each component. It we were to
implement this as a polymorphic recursive method on GObject, it would be necessary to add
one method for each operation we want to support. We chose instead to apply the Visitor
design pattern [2]. The Visitor pattern is ideal for this because the number of grammar object
types is fixed, whereas the number of possible operations is unlimited. The list of operations
we need to support includes loading and saving grammar objects as well as generating various
types of information from grammars: language models, random samples, preprocessors, inte-
gration networks...

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 12

Legend GObject
AbstractClass
[]
inheritance Node Sequence
ConcreteClass
[
I 1
NamedNode Literal
1]
NonTermBase PSlot
[
[I []
Toplevel AFrame UnimodalNode NonTerm

FIGURE 7. Class Hierarchy For Multimodal Grammar Components

In the Visitor pattern, the only necessary modification to the target object hierarchy (GObject
and its subclasses in this case) is a polymorphic method that accepts an instance of an abstract
Visitor class. Using a well-know object-oriented technique called double-dispatch, the same
method invocation ends up calling different functions depending on the actual types of two
objects: the target of the visit and the Visitor instance. Different operations are implemented
by different subclasses of the Visitor base class. The Visitor pattern forms the basis for the
implementation of many algorithms that work on multimodal grammars, without requiring ad
hoc modifications of the GObject class hierarchy.

5. MULTIMODAL GRAMMAR TOOLS

This section describes a collection of grammar-based tools that are useful for user input mod-
eling in multimodal applications. For the most part the tools are written in Java to maximize
platform independence and to make it possible to deploy them on the World Wide Web as
applets running inside Web browsers.

5.1. Visual Grammar Designer

Traditional grammars are usually represented textually in some descriptive language such as
Backus-Naur Form (BNF) or Phoenix [19]. It is rather difficult to follow these textual descrip-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 13

tions at a glance and keep track of grammar rewrites, especially as the size of the grammar
increases. A graphical display that represents the grammar components visually as in Figure 6
makes it much easier to understand the grammar by visual examination. Furthermore, creating
or editing a large grammar in textual form sometimes requires the skills of a computer pro-
grammer; in contrast, designing a grammar visually by dragging and dropping graphical com-
ponents is much more intuitive and requires less training. We have implemented an object-
oriented, drag-and-drop grammar editor that employs exactly this paradigm.

5.1.1 Graphical Display of Grammar Components

In our implementation the graphical user interface (GUI) elements are cleanly separated from
the underlying grammar representation using the Observable/Observer design pattern [2], sim-
ilar to the model-view approach in the Smalltalk programming environment. Each GObject
has one or more associated “observers” or “views”, represented by subclasses of a GObject-
View root class (Figure 6 shows some views captured from a computer display). The views
know how to update themselves whenever the “observable” or “model” object broadcasts a
change in its data. External entities do not need to know about views; when they manipulate
the underlying grammar structure the screen will be automatically updated.

The views for Node objects can be expanded to show the internal structure or collapsed to dis-
play only the node labels. This way the overall grammar structure can be grasped instantly
while still allowing for detailed examination of any section, down to the level of Literals.
When connected nodes are expanded, phrases modeled by the grammar can be easily read off
the display as in part d) and e) of Figure 6.

5.1.2 Drag-And-Drop Editing

The view objects provide convenient handles to manipulate grammar entities visually. It is rel-
atively easy to implement a drag-and-drop GUI in which the handles may be moved around by
moving the mouse while holding down a button (“dragging”), and inserted into other objects
by letting go of the mouse button when the cursor is over the desired location (“dropping”).
This kind of direct manipulation is ubiquitous in modern GUIs and familiar to most computer
users. It permits the rapid construction of a grammar with convenient, continuous visualiza-
tion of various grammar parts and their relationships.

Our Multimodal Grammar Designer program supports exactly this kind of grammar construc-
tion and editing. Figure 8 shows a screen capture of the Designer. The main window shows a
graphical grammar display. Views of different node types are color coded so that the type of
any grammar entity can be grasped instantly. Expanded and collapsed states of grammar
nodes are also distinguishable visually. Double-clicking on any node expands the node or col-
lapses it if the node is already expanded. Clicking with the right mouse button displays a con-
text-sensitive popup menu tailored to the object beneath the cursor. Certain menu items are
common across all objects, such as a “Properties” menu item that pops up a dialog allowing
the user to modify object attributes.

On the right side of the Designer window is a palette of grammar object “prototypes” that can
be used to construct a grammar visually. The prototypes are also color coded and grouped by

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 14

ZoomAnount (@)

FIGURE 8. The Multimodal Grammar Designer

object types. There are prototypes that allow the creation of new objects, while the rest corre-
spond to existing objects and permit their reuse in difference places. The prototypes can be
“grasped” and dragged with the mouse. The cursor changes shape when a dragged prototype
passes over potential drop sites to indicate whether a drop at that location will be allowed. For
example, AFrame can only be dropped into Toplevel, PSlot can only be dropped in AFrame,
and so on. Visual feedback in the form of a dashed line indicates where the new object (or ref-
erence to an existing object) would be inserted in the drop target. When a newly created object
is dropped, a Properties dialog pops up to allow the user to change object attributes from the
default values. After the object has been successfully added to the grammar, this dialog can be
accessed again at any moment by right-clicking and choosing “Properties” from the context
menu, as described above.

5.2. Random Sample Generator

Components of multimodal applications usually need to be validated by computing certain
evaluation functions over a set of test input data. If little or no actual data is available, as may

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 15

be the case during the construction of an application prototype, it is still possible to obtain a
set of artificial data that reflects a user input model constructed by the application developer.
This kind of model is precisely what multimodal grammars are suppose to encode. Using the
probability distribution represented by sequence weights, we can generate random multimodal
input samples that follow such a distribution.

The sample generator is a Visitor subclass (see Section 4.3) that traverses the grammar graph
and selects sequences at random. For each non-terminal node, the weight of each sequence is
divided by the total weights of all sequences in the node to produce the selection probability.
The literal tokens from selected sequences are concatenated to form a token stream for each
modality. The output is encoded in a format that retains the parameter slot segmentation infor-
mation in case this may be useful to the evaluation procedures that process the generated data.

5.3. N-gram Language Model Generator

A large vocabulary, continuous speech recognizer is usually customized for a particular task
domain using a statistical language model, normally a bigram or trigram model. A statistical
language model helps guide the search for the correct speech-to-text mapping by predicting
the likelihood of encountering a word based on preceding words. A bigram model uses a sin-
gle preceding word whereas a trigram model uses two preceding words.

N-gram language models are normally generated by counting trigrams (sequences of 3 words)
in a training corpus and computing bigram/trigram probabilities from the trigram count table.
Generating the language model directly from a grammar means performing the equivalent of
generating a very large number of random samples from the grammar to form the training cor-
pus. Since generating random samples involves traversing the grammar structure, we can
count the trigrams during the traversal without storing any samples. Using the sequence
weight distribution built into the grammar, we can compute an exact trigram weight for each
trigram permitted by the grammar. If we imagined generating an enormous number of random
samples and dividing the number of times a certain trigram occurs by the number of samples,
the limit of this ratio as the corpus size tends to infinity would be exactly the trigram weight.
The language model generated from these trigram weights should be more accurate than one
generated from any random corpus, no matter how large the corpus size is.

5.3.1 Basic N-gram Counting Algorithm

It is possible to compute a trigram weight table for each grammar node by recursively combin-
ing the trigram weight tables of the node’s components. Since each node is composed of
weighted alternative sequences, and each sequence is a series of nodes, we define three basic
operations on trigram weight tables:

1. Scaling. This operation multiplies all trigram weights in a table by a scaling factor repre-
senting the probability that a certain sequence in a node would be randomly selected if we
were to generate random samples from the grammar. This probability is simply the weight
of the sequence divided by the total weight of all sequences in the node. '

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 16

2. Merge. This operation takes the trigram weight tables for two sequences in a node and
combines them to form a new trigram weight table that contains all the trigrams in the orig-
inal tables. Weights for trigrams that occur in both component tables are added because if
we were to generate random samples from the grammar, the trigram counts for samples that
contain either of the two alternative sequences would accumulate additively.

3. Concatenation. This operation produces the trigram weight table for two nodes in a series
by concatenating trigrams from the two nodes to form new trigrams. Two trigrams can be
concatenated if one occurs at the end of the first node and the other occurs at the beginning
of the second node. The weights of the concatenated trigrams are multiplied together.

The language model generator is a Visitor subclass (see Section 4.3) that does the following
for each object it visits:

 ifit’s a Literal, count the trigrams that occur in the Literal’s text;

« ifit’s a PSlot, visit the UnimodalNode for the designated modality (usually speech);

« if it’s any other non-terminal node, visit each sequence of the node in turn and merge the
resulting trigram weight tables;

 if it’s a sequence, visit each node in the sequence and concatenate the resulting trigram
weight tables, then scale the result by the normalized sequence weight.

Nodes can be reused in different parts of the grammar so we cache the computed trigram
weight table for each node and do not recompute it if the node is visited again.

5.3.2 Dealing With Recursive Grammar References

The above algorithm works if the grammar is finite-state, but as soon as there is a recursive
reference to a node, the algorithm goes into an infinite loop. The only practical way of dealing
with this is to stop the recursion at some depth. In that case the computed trigram weights are
no longer exact, but if the recursion were allowed to go deep enough, the multiplicative effects
of scaling would reduce the probabilities to such small values that the depth-limited computa-
tion could produce results with any desired accuracy.

Consider the following grammar node:

This node represents sentences of the form a”cb” for all integers n>0. The possible trigrams
are: <s><s>a, <S><s>c, <g>aa, <s>ac, aaa, aac, acb, cbb, bbb, cb</s>, bb</s>,
<s>c</s> where <s> and </ s> denote the beginning- and end-of-sentence markers. Imagin-
ing that each sentence starts with two beginning markers and ends with one end marker makes
trigram counting more regular. It is easy to see that the trigram weight for <s><s>a must be p
and the weight for <s><s>c must be 1-p, for example, but the trigram weight for aaa is dis-

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 17

tributed across all sentences a"cb” for n>3. For a specific n the trigram aaa occurs n—2 times

in the sentence, and the sentence has an occurrence probability of p"(1—p), hence the exact tri-
gram weight is the sum of the infinite series

o 3
w= Y (n-2)p"(l-p) = -

n=3

If we stop the recursive expansion at depth n,,,,, we get the partial sum for n=3...n,,,,,,. One

more level of expansion would add (n,,, — 1)p""* 1(1 - p) to the partial sum. We can stop
if this new contribution divided by the new partial sum is smaller than an accuracy threshold,
say 10°%. In general we maintain a running product of normalized sequence weights to com-
pute the sentence probability and estimate the contribution of a recursive expansion to the tri-
gram weights.

The above heuristic will not break the infinite loop if the recursion does not “bottom out”, e.g,
if the above grammar has no c but only the single sequence aNb with unit probability. In this
case the trigram weights are not well defined anyway, so we supplement the stopping heuristic
by imposing an absolute maximum recursion depth and raising an exception if the recursion
unwinds completely without producing any trigrams.

5.3.3 Computing N-gram Probabilities

A trigram language model contains unigram, bigram, and trigram penalties, which are log;, of
probabilities. Given a trigram count table, the various n-gram probabilities can be computed
as follows:

count(a,)
Punigram(an) = m
i 1
Pbigram(aman) = Count(ama”)
zicount(amai)
count(amanap)

P

trigram(amanap) =
zi count(a,a,aq;

Since the n-gram weights computed by traversing the grammar are equivalent to the ratios of
n-gram counts to the training corpus size, the weights can be directly substituted for the counts
in the above equations.

Each unigram also has a back-off value used to estimate the probabilities of bigrams that did
not occur in the training corpus. Similarly unknown trigram probabilities are estimated from
bigram back-off values. This back-off scheme smooths out the n-gram distributions and lets
the speech recognizer accept slight variations of sentences permitted by the grammar. We

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 18

compute the back-off values using an absolute discount scheme in which a fixed discount
(usually 0.5) is subtracted from each n-gram count to form a count for the unseen n-grams.
Since this operation requires an actual count, we have to supply an equivalent corpus size
which is then multiplied with the n-gram weights to produce the equivalent counts. A reason-
able equivalent corpus size can be automatically computed to give the smallest weight an
equivalent count of 1, i.e., to produce an equivalent training corpus in which each trigram
allowed by the grammar appears at least once.

5.4. Input Preprocessor Generator

The input integration process described in Section 3 produces a labeled segmentation of mul-
timodal input streams that breaks the input into a sequence of parameter slots. Actual parame-
ter values still have to be extracted from the parameter slots in a postprocessing step. This
could be much simplified if the most basic concepts in the input domain were represented by
equivalent classes rather than simple words. For instance, if a parameter slot may contain a
number that must be extracted, all the input phrases that represent a number (“one”, “two”,
“twenty three” etc.) could be preprocessed and converted to a single NUMBER token with an
attached data packet containing the actual number phrase. The advantages of this preprocess-

ing are twofold:

« the integration network described in Section 3.2 can achieve higher accuracies because it
only has to learn associations for the NUMBER token instead of all the possible number
phrases;

 the parameter extraction postprocessing can readily identify which parts of the segmented
input contain relevant, extractable information.

The preprocessing step can be implemented by a simple state-machine-based parser that iden-
tifies particular word groups in the target input stream (this is usually the speech stream but
the same algorithm works for any modality that needs preprocessing). In the multimodal
grammar we can mark appropriate NonTerm nodes as “parseable”, e.g., a NUMBER node that
contains a sub-grammar for number phrases. Out toolkit includes a Visitor subclass (see Sec-
tion 4.3) that functions as a grammar compiler and traverses the grammar structure to generate
a state-machine matcher for each parseable node. The resulting collection of state machines
can be used to match fragments of the input stream and convert them to tokens tagged as car-
rying parameter information.

The degree of preprocessing may vary depending on the task domain, but there is a trade-off
between complexity and flexibility. If the preprocessing identifies high-level concepts, the
complexity of the input space is reduced at the detriment of flexibility since input fragments
must match the sub-grammars for the target concepts exactly. A good rule of thumb is to parse
only the most basic concepts of the task domain needed for parameter extraction, e.g.,
DAYS_OF_THE_WEEK in an appointment scheduling task or CITY_NAME in a map naviga-
tion task. The job of matching higher-level constructs in a flexible manner should be left to the
integration network which can be trained from actual user input.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 19

5.5. Integration Network Generator

The multi-state mutual information network described in Section 3.2 has connection weights
that can be computed from input-output occurrence probabilities in a training corpus. As with
n-gram language models (see Section 5.3) it is possible to compute these probabilities directly
by traversing the grammar structure, without generating any input sample. This algorithm is
implemented in a Visitor subclass (see Section 4.3) that recursively computes count tables
similar to the n-gram tables described in Section 5.3. In one experiment, this network genera-
tor took 2 minutes to produce a network which would have required the equivalent of 6 mil-
lion training examples and more than 11 hours of training time to cover all possible input
combinations.

5.6. Interpretation Code Generator

An integration network such as one produced by the network generator described above only
segments and labels the input to identify the action frame and parameter slots. As explained in
Section 5.4, the actual parameter values have to be extracted in a postprocessing phase to com-
plete the multimodal interpretation process. Some part of this postprocessing must necessarily
be domain-dependent, but the rest usually consists of repetitive code that branches based on
the names of action frames, parameter slots, or preprocessed concept nodes. Much of this
domain-independent code can be automatically generated from the grammar structure.
Another Visitor subclass (see Section 4.3) accomplishes this by traversing the grammar and
writing out template code customized by the grammar context at each node.

The output of the code generator is a Java class that contains methods to identify the interpre-
tation context (e.g., the current action frame and parameter slot) and branch to the appropriate
postprocessing code. The application developer only has to fill in the domain-dependent parts
of the postprocessing template. To avoid losing the modifications if the template code is
regenerated, the class produced by the code generator is usually retained unchanged and the
modifications are put in a derived class by overriding the appropriate methods.

6. CONCLUSION

The multimodal semantic model and grammar modeling language presented in this paper are
useful for characterizing user inputs that comprise multiple input channels. Our models repre-
sent the meaning of multimodal inputs as parameterized actions to be carried out by the target
application in response to the inputs. Multiple input streams are integrated by an alignment -
and joint segmentation process that produces parameter slots in an action frame.

We described a multimodal integration algorithm based on a multi-state mutual information
network that can be trained from examples or directly constructed from a multimodal gram-
mar. The MS-MIN assigns scores to output nodes using mutual information weights from
input nodes and produces an optimal segmentation and labeling of the input streams using
dynamic programming. Under suitable assumptions, this can be interpreted as a maximum a
posteriori decision.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 20

Our multimodal grammar structure is easily implemented in Java and lends itself to a visual
drag-and-drop construction paradigm that requires little or no programming skills on the part
of multimodal application developers. We also produced a set of tools based on this grammar
implementation to automate several steps in the construction of multimodal input processing
modules. From a multimodal grammar that models user inputs for a given task domain, the
tools can generate random input samples, a statistical language model for speech recognition,
input preprocessors to parse macro concepts from the raw input tokens, an MS-MIN semantic
integration network, and a postprocessor skeleton for parameter extraction. These components
greatly facilitate the construction of multimodal applications, especially in the prototype stage
when little or no actual user data is available.

7. ACKNOWLEDGEMENTS

We would like to thank Jie Yang for helpful insights and comments on this manuscript, Robert
Malkin for testing the visual grammar editor and providing bug reports, and Klaus Ries for
explaining the n-gram calculation.

8. REFERENCES

[1] Ando, H., Kitahara, Y., and Hataoka, N., “Evaluation of Multimodal Interface Using Spo-
ken Language and Pointing Gesture On Interior Design System,” Proc. ICSLP’94 (Yoko-
hama, Japan, Sept. 1994), Vol. 2, pp. 567-570. :

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of Reus-
able Object-Oriented Software, Addison-Wesley, 1995.

[3] Gorin, A.L., Levinson, S., Gertner, A., and Goldman, E., “Adaptive Acquisition of Lan-
guage,” Computer, Speech and Language, Vol. 5, No. 2, April 1991, pp. 101-132.

[4] Gorin, A.L., “On Automated Language Acquisition,” J. Acoust. Soc. Am., Vol. 97, No. 6,
June 1995, pp. 3441-3461.

[5] Haffner, P., Franzini, M., and Waibel, A., “Integrating Time Alignment and Neural Net-
works for High Performance Continuous Speech Recognition,” Proc. ICASSP’91 (Tor-
onto, Canada, May 1991), Vol. 1, pp. 105-108.

[6] Haffner, P. and Waibel, A., “Multi-State Time Delay Neural Networks for Continuous
Speech Recognition,” Advances in Neural Network Information Processing Systems 4,
Morgan Kaufmann Publishers, 1992, pp. 135-142.

[7] Hauptmann, A., “Speech and Gestures for Graphic Image Manipulation,” Proc. CHI’'89
(Austin, Texas, April-May 1989), pp. 241-245.

[8] Koons, D.B., Sparrell, C.J., and Thorisson, K.R., “Integrating Simultaneous Input From
Speech, Gaze, and Hand Gestures,” Intelligent Multimedia Interfaces, Maybury, M.T.
(Ed.) (MIT Press, 1993), pp. 257-276.

[9] Miller, L.G. and Gorin, A.L., “Structured Networks for Adaptive Language Acquisition,”
Int. J. Pattern Recog. Artificial Intell., Vol. 7, No. 4, 1993, pp. 873-898.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 21

[10] Mitchell, T.M., Machine Learning, WCB/McGraw-Hill, 1997.

[11]Ney, H., “The Use of a One-Stage Dynamic Programming Algorithm for Connected
Word Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.
32, No. 2, 1984, pp. 263-271.

[12] Oviatt, S.L., Cohen, P.R., and Wang, M., “Toward Interface Design for Human Language
Technology: Modality and Structure as Determinants of Linguistic Complexity,” Speech
Communication (Netherlands), Vol. 15, Nos. 3-4, Dec. 1994, pp. 283-300.

[13] Rumelhart, D.E. and McClelland, J.L., Parallel Distributed Processing: Exploration in
the Microstructure of Cognition (Vols. 1 & 2), MIT Press, 1986.

[14] Sankar, A. and Gorin, A.L., “Adaptive Language Acquisition in a Multisensory Device,”
Artificial Neural Networks for Speech and Vision, Mammone, R. (Ed.) (Chapman and
Hall, London, 1993), pp. 324-356.

[15] Vo, M.T. and Waibel, A., “Multimodal Human-Computer Interaction,” Proc. ISSD’93
(Waseda, Japan, 1993).

[16] Vo, M.T., Houghton, R., Yang, J., Bub, U., Meier, U., Waibel, A., and Duchnowski, P.,
“Multimodal Learning Interfaces,” Proc. ARPA SLT Workshop 95 (Austin, Texas, 1995).

[17] Vo, M.T. and Wood, C., “Building an application framework for speech and pen input
integration in multimodal learning interfaces,” Proc. ICASSP’96 (Atlanta, Georgia, May
1996).

[18] Waibel, A., Vo, M.T., Duchnowski, P., and Manke, S., “Multimodal Interfaces,” Artificial
Intelligence Review, Special Volume on Integration of Natural Language and Vision Pro-
cessing, McKevitt, P. (Ed.), Vol. 10, Nos. 3-4, 1995.

[19] Ward, W., “Understanding Spontaneous Speech: the Phoenix System,” Proc. ICASSP’91
(Toronto, Canada, May 1991), Vol.1, pp. 365-367.

Modeling and Interpreting Multimodal Inputs: A Semantic Integration Approach 22

